Get Answers to all your Questions

header-bg qa

If sum of all the solutions of the equation 8\cos x\cdot \left (\cos \left (\frac{\pi }{6} + x \right )\cdot\cos \left (\frac{\pi }{6}-x \right )- \frac{1}{2} \right ) = 1                                                      in \left [ 0,\pi \right ] is  k\pi
, then k is equal to :

  • Option 1)

    \frac{20}{9}

  • Option 2)

    \frac{2}{3}

  • Option 3)

    \frac{13}{9}

  • Option 4)

    \frac{8}{9}

 

Answers (2)

best_answer

8\cos x \left ( \cos ^{2}\pi /6- \sin ^{2}x -1/2 \right )= 1

8\cos x \left ( -3/4- \cos ^{2}x )= 1

2(4\cos^{3}x- 3\cos x)= 1\Rightarrow \cos 3x= 1/2

3x= 2n\pi \pm \pi /3

n=0,n=1,n=2

sum of all values = 13/9

 

Triple Angle Formula -

Triple angle formula

- wherein

These are formulae for triple angles.

 

 

General Solution of Trigonometric Ratios -

\cos \Theta = \cos \alpha

\Theta = 2n\pi \pm \alpha , n\epsilon I

- wherein

\alpha is the given angle

 

 


Option 1)

\frac{20}{9}

Option 2)

\frac{2}{3}

Option 3)

\frac{13}{9}

Option 4)

\frac{8}{9}

Posted by

Himanshu

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE