Get Answers to all your Questions

header-bg qa

\int \frac{dx}{\left ( 2x+3 \right )\sqrt{4x+5}}=

  • Option 1)

    \tan^{-1}\sqrt{4x-5}+c

  • Option 2)

    \tan^{-1}\sqrt{4x+5}+c

  • Option 3)

    \tan^{-1}\sqrt{5x+4}+c

  • Option 4)

    \tan^{-1}\sqrt{5x-4}+c

 

Answers (1)

best_answer

As we learnt

Type of Integration by perfect square -

The integration in the form 

(i) \int \frac{dx}{(px+q)\sqrt{ax^{2}+bx+c}}

(ii) \int \frac{dx}{(px+q)\sqrt{ax+b}}

(iii) \int \frac{(a+bx)^{m}}{(p+qx)^{n}}dx

- wherein

Working rule.

(i)  \rightarrow put  (px+q)=\frac{1}{t}

(ii) \rightarrow put  (ax+b)=t^{2}

(iii) \rightarrow put  (p+qx)=t

 

 Let I=\int {\frac{{dx}}{{\left( {2x + 3} \right)\sqrt {4x + 5} }}} $ 

Put 4x + 5 = t     

\therefore x=\frac{{t - 5}}{4}$ \therefore x=\frac{{t - 5}}{4}\: \: \therefore dx= \frac{dt}{4}

\therefore I=\frac{1}{4}\int {\frac{{dt}}{{\left( {\frac{{2t - 10}}{4} + 3} \right)\sqrt t }}} =\frac{1}{2}\int {\frac{{dt}}{{(t + 1)\sqrt t }}}

 Let\: \sqrt{t}=u

\therefore I=\int {\frac{{du}}{{{u^2} + 1}}} = {\tan ^{ - 1}}\sqrt t + c$

\therefore I=\tan^{-1}\sqrt {4x + 5} + c.


Option 1)

\tan^{-1}\sqrt{4x-5}+c

Option 2)

\tan^{-1}\sqrt{4x+5}+c

Option 3)

\tan^{-1}\sqrt{5x+4}+c

Option 4)

\tan^{-1}\sqrt{5x-4}+c

Posted by

gaurav

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE