Get Answers to all your Questions

header-bg qa

If (6 \sqrt{6}+14)^{2 n+1}=P, find PF, where F is the fractional part of P

Option: 1

20^{2 n}


Option: 2

20^{2n-1}


Option: 3

20^{2 n+1}


Option: 4

Nore of these


Answers (1)

best_answer

Let (6 \sqrt{6}+14)^{2 n+1}=P=I+F

Where I a is positive integer and 0 \leq \mathrm{F}<1

Clearly (6 \sqrt{6}-14)^{2 n+1}=F^{\prime}where 0<F^{\prime}<1

Subtracting, we get  2\left[{ }^{2 n+1} C_{1}(6 \sqrt{6})^{2 n} \times 14+{ }^{2 n+1} C_{3}(6 \sqrt{6})^{2 n-2} \times 14^{3}+\ldots \ldots . .\right]=\mathrm{I}+\mathrm{F}-\mathrm{F}^{\prime}

\therefore \mathrm{I}+\mathrm{F}-\mathrm{F}^{\prime}= an even integer.

But since 0 \leq F<1 and 0<F^{\prime}<10 \leq F<1 and 0<F^{\prime}<1, the only possibility is that F-F^{\prime}=0 or F=F^{\prime}

Hence I is an even integer.

Also P F=P F^{\prime}=(6 \sqrt{6}+14)^{2 n+1}(6 \sqrt{6}-14)^{2 n+1}

=(216-196)^{2 n+1}=20^{2 n+1}.

Posted by

Deependra Verma

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE