Get Answers to all your Questions

header-bg qa

If \vec{a}=2\vec{p}+3\vec{q}-\vec{r}, \vec{b}=\vec{p}-2\vec{q}+2\vec{r }, \vec{c}=-2\vec{p}+\vec{q}-2\: \vec{r } and \vec{R}=3\vec{p}-\vec{q}+2\: \vec{r }, then \vec{R} equals (\vec{p},\vec{q},\vec{r} are non-coplanar)

Option: 1

2\vec{a}+5\vec{b}+3\vec{c}


Option: 2

2\vec{a}-5\vec{b}-3\vec{c}


Option: 3

2\vec{a}-5\vec{b}+3\vec{c}


Option: 4

2\vec{a}+5\vec{b}-3\vec{c}


Answers (1)

best_answer

AS we learned

Linear combination of vectors -

\vec{r}=l\vec{a}+m\vec{b}+n\vec{c}

- wherein

Any vectors \vec{r} in space can be written as linear combination of 3 non-coplanar vectors.

 

 Let \vec{R}=x\vec{a}+y\vec{b}+z\vec{c}

\Rightarrow 3\vec{p}-\vec{q}+2\vec{r}=(2x+y-2z)\vec{p}+(3x-2y+z)\vec{q}+(-x+2y-2z)\vec{r }

\because \vec{p},\vec{q},\, and\, \gamma are non-coplanar, so

\alpha \vec{p}+\beta \vec{q}+\gamma \vec{r}=\vec{0} only when \alpha =0,\, \, \beta =0,\, \, \gamma =0

2x+y-2z=3; 3x-2y+z=-1; -x+2y-2z=2

on solving, we get

x=2, y=5, z=3

\therefore \vec{R}=2\vec{a}+5\vec{b}+3\vec{c}

 

 

Posted by

Devendra Khairwa

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE