Get Answers to all your Questions

header-bg qa

If the common tangents to the purabola, \mathrm{x^2=4 y} and the circle. \mathrm{x^2+y^2=4} interiect at the poimt \mathrm{P}, then the distanice of \mathrm{P} from the origin, is
 

Option: 1

2(\sqrt{2}+1)
 


Option: 2

3+2 \sqrt{2}
 


Option: 3

2 \sqrt{(3+2 \sqrt{2})}
 


Option: 4

\sqrt{2}+1


Answers (1)

best_answer

\mathrm{\text{Tangent to} \: x^2+y^2=4\: is}

\mathrm{y=m x \pm 2 \sqrt{1+m^2}}

\mathrm{\text{Given equation of parabola is }x^2=4 y}

\mathrm{\therefore \quad x^2=4 m x+8 \sqrt{1+m^2} }         (From (i))

\mathrm{ \Rightarrow \quad x^2-4 m x-8 \sqrt{1+m^2}=0 }

As there is only one intersection point

\mathrm{ \therefore \text { Discriminant }=0 }

\mathrm{ \Rightarrow \quad 16 m^2+4 \cdot 8 \sqrt{1+m^2}=0 \Rightarrow m^2+2 \sqrt{1+m^2}=0 }

\mathrm{ \text { or } m^2=-2 \sqrt{1+m^2} }

\mathrm{ \Rightarrow m^4=4+4 m^2 \Rightarrow m^4-4 m^2-4=0 }

\mathrm{ \Rightarrow m^2=\frac{4 \pm \sqrt{16+16}}{2}=\frac{4 \pm 4 \sqrt{2}}{2} \Rightarrow m^2=2 \pm 2 \sqrt{2} }

Put in (i), we get
\mathrm{ y=2 \sqrt{1+2+2 \sqrt{2}}=2 \sqrt{3+2 \sqrt{2}} \quad(\because \text { at } P, x=0) }

Hence option 3 is correct.



 

Posted by

manish painkra

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE