Get Answers to all your Questions

header-bg qa

If the product of focal distances of a point \mathrm{P(a \cos \theta, b \sin \theta)} on an ellipse \mathrm{\frac{x^2}{a^2}+\frac{y^2}{b^2}=1} is \mathrm{\lambda}-times the square of the semi-diameter \mathrm{CD} (of conjugate diameter \mathrm{CP} ), then \mathrm{ \lambda=}

 

Option: 1

4


Option: 2

2


Option: 3

1


Option: 4

3


Answers (1)

best_answer

Let foci be \mathrm{S(a e, 0) \: and \: S^{\prime}(-a e, 0)\: As\, P \: is \: (a \cos \theta, b \sin \theta)}

\mathrm{D \: is \: \: \left(a \cos \left(\theta+\frac{\pi}{2}\right), b \sin \left(\theta+\frac{\pi}{2}\right)\right)}

            \mathrm{=(-a \sin \theta, b \cos \theta) . }

By using definition of ellipse,

\mathrm{ P S=e(P M) }

\mathrm{ \text { Or } \quad P S=e\left(\frac{a}{e}-a \cos \theta\right) }

\mathrm{ =a-a e \cos \theta }

\mathrm{ =a(1-e \cos \theta)(\text { Standard Result }) }

\mathrm{ \therefore \quad \text { SP.S'P }=a(1-e \cos \theta) a(1+e \cos \theta) }

\mathrm{ =a^2\left(1-e^2 \cos ^2 \theta\right)=a^2-a^2 e^2 \cos ^2 \theta }

\mathrm{ \text { But } b^2=a^2\left(1-e^2\right) }

\mathrm{ \therefore \quad \text { SP.S'P }=a^2-\left(a^2-b^2\right) \cos ^2 \theta }

\mathrm{ =a^2 \sin ^2 \theta+b^2 \cos ^2 \theta=\mathrm{CD}^2 }

Hence option 3 is correct.










 

Posted by

jitender.kumar

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE