Get Answers to all your Questions

header-bg qa

In a Young's double slit experiment, an angular width of the fring is \mathrm{0.35^{\circ}} on a screen placed at 2m away for particular wavelength of 450 nm. The angular width of the fringe, when whole system is immersed in a medium of refractive index \mathrm{7 / 5 \text {, is } \frac{1}{\alpha}}. The value of \mathrm{\alpha} is ____________.

Option: 1

4


Option: 2

3


Option: 3

2


Option: 4

1


Answers (1)

best_answer

Angular fringe width

\theta =\frac{\lambda }{D}

\frac{\lambda_{1} }{\lambda _{2}}=\frac{\mu _{2}}{\mu _{1}}=\frac{7/5}{1}=\frac{7}{5}

\begin{aligned} \lambda_{2} &=\frac{5}{7} \times \lambda_{1}=\frac{5}{7} \times 450 \\ \frac{\theta_{1}}{\lambda_{1}} &=\frac{\theta_{2}}{\lambda_{2}} \\ \theta_{2} &=\frac{\lambda_{2}}{\lambda_{1}} \times \theta_{1} \\ &=\frac{5}{7} \times \frac{450}{450}\times 0.35 \\ &=\frac{5}{7} \times 0.35=\frac{1}{4} \end{aligned}

Hence  \alpha =4

 

Posted by

HARSH KANKARIA

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE