Get Answers to all your Questions

header-bg qa

In an experiment with a convex lens, The plot of the image distance \mathrm{\left(v^{\prime}\right)} against the object distance \mathrm{\left(\mu^{\prime}\right)} measured from the focus gives a curve \mathrm{v^{\prime} \mu^{\prime}=225}. If all the distances are measured in \mathrm{cm}. The magnitude of the focal length of the lens is ____________\mathrm{cm}.

Option: 1

15


Option: 2

-


Option: 3

-


Option: 4

-


Answers (1)

best_answer

\mathrm{u=u^{\prime}+f \rightarrow \text { (1) } }

\mathrm{v=v^{\prime}+f \rightarrow \text { (2)}}
By lens equation

\mathrm{\frac{1}{v}-\frac{1}{u}=\frac{1}{f} }

\mathrm{\frac{1}{+\left(v^{\prime}+f\right)}-\frac{1}{-\left(\mu^{\prime}+f\right)}=\frac{1}{f} }

\mathrm{[\left.\left(\mu^{\prime}+f\right)+\left(v^{\prime}+f\right)\right] f=\left(v^{\prime}+f\right)\left(\mu^{\prime}+f\right) }

\mathrm{\left(\mu^{\prime}\right) f+f^2+v^{\prime} f+f^2=v^{\prime} \mu^{\prime}+\mu^{\prime} f+v^{\prime} f \\ +f^2 }

\mathrm{f^2=\mu^{\prime} v^{\prime}=225 \text { (Given) } }

\mathrm{f=15 \mathrm{~cm}}







 

Posted by

Irshad Anwar

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE