Get Answers to all your Questions

header-bg qa

In the ellipse   \mathrm {\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 }  is rotated about centre in its own plane by  \mathrm {90^{\circ} } in clockwise direction, then the point \mathrm {(a \cos \theta, b \sin \theta) }  becomes
 

Option: 1

\mathrm {(b \sin \theta-a \cos \theta)}


Option: 2

\mathrm {(a \cos \theta-b \sin \theta)}


Option: 3

\mathrm {(-a \cos \theta-b \sin \theta)}


Option: 4

Remains same


Answers (1)

best_answer

Point \mathrm P goes to \mathrm Q. Its direction with respect to \mathrm x-axis is \mathrm \theta in original position. In new position  \mathrm y-axis will play the role of major axis so its inclination with -ve direction of \mathrm y-axis will be same. So, new coordinate will be  \mathrm {(b \sin \theta,-a \cos \theta)}

Posted by

Devendra Khairwa

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE