Get Answers to all your Questions

header-bg qa

In Young's Double slit experiment, the width of the one of the slit is three times the other slit. The amplitude of the light coming from a slit is proportional to the slit -width. Find the ratio of  the maximum to minimum intensity in the interference pattern.
Option: 1 2:1
Option: 2 4:1
Option: 3 3:1
Option: 4 1:4

Answers (1)

best_answer

\begin{aligned} &\text { Amplitude } \propto \text { Width of slit }\\ &\begin{array}{l} \Rightarrow \mathrm{A}_{2}=3 \mathrm{~A}_{1} \\ \\ \frac{\mathrm{I}_{\max }}{\mathrm{I}_{\min }}=\left(\frac{\sqrt{\mathrm{I}_{1}}+\sqrt{\mathrm{I}_{2}}}{\left|\sqrt{\mathrm{I}_{1}}-\sqrt{\mathrm{I}_{2}}\right|}\right)^{2} \end{array} \\ &\because \text { Intensity } \mathrm{I} \propto \mathrm{A}^{2}\\ \\ &\Rightarrow \frac{\mathrm{I}_{\max }}{\mathrm{I}_{\min }}=\left(\frac{\mathrm{A}_{1}+\mathrm{A}_{2}}{\left|\mathrm{~A}_{1}-\mathrm{A}_{2}\right|}\right)^{2}\\ \\ &\begin{array}{l} \Rightarrow \frac{\mathrm{I}_{\max }}{\mathrm{I}_{\min }}=\left(\frac{A_{1}+3 A_{1}}{\left|A_{1}-3 A_{1}\right|}\right)^{2} =\left(\frac{4 A_{1}}{2 A_{1}}\right)^{2}=4: 1 \end{array} \end{aligned}

Posted by

avinash.dongre

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE