Get Answers to all your Questions

header-bg qa

In Young's double slit experiment, one of the slit is wider than other, so that the amplitude of the light from one slit is double of that from other slit. If I be the maximum intensity, the resultant intensity I when they  interfere at phase difference  \phi  is given by :

Option: 1

\frac{I_{m}}{9}\left ( 4+5\cos \phi \right )


Option: 2

\frac{I_{m}}{3}\left ( 1+2\cos^{2}\frac{\phi }{2} \right )


Option: 3

\frac{I_{m}}{5}\left ( 1+4\cos^{2}\frac{\phi }{2} \right )


Option: 4

\frac{I_{m}}{9}\left ( 1+8\cos^{2}\frac{\phi }{2} \right )


Answers (1)

best_answer

Here ,A_{2}= 2A_{1}

\because \: \: Intensity\alpha \left ( Amplitude \right ) ^{2}

\therefore \: \: \: \frac{I_{2}}{I_{1}}= \left ( \frac{A_{2}}{A_{1}} \right )^{2}= \left ( \frac{2A_{1}}{A_{1}} \right )^{2}= 4

I_{2}= 4I_{1}

Maximum intensity, I_{m}= \left ( \sqrt{I_{1}} +\sqrt{I_{2}}\right )^{2}

= \left ( \sqrt{I_{1}} +\sqrt{4I_{2}} \right )^{2}= \left ( 3\sqrt{I_{1}} \right )^{2}= 9I_{1}

or\: \: I_{1}= \frac{I_{m}}{9}\cdots \cdots \cdots (i)

Resultant intensity, I= I_{1}+I_{2}+2\sqrt{I_{1}I_{2}}\cos \phi

I_{1}+4I_{1}+2\sqrt{I_{1}\left ( 4I_{1} \right )}\cos \phi

5I_{1}+4I_{1}\cos \phi = I_{1}+4I_{1}+4I_{1}\cos \phi

I_{1}+4I_{1}\left ( 1+\cos \phi \right )

I_{1}+8I_{1}\cos ^{2}\frac{\phi }{2}\: \: \: \: \: \left ( \because 1+\cos \phi = 2\cos ^{2}\frac{\phi }{2} \right )

= I_{1}\left ( 1+8\cos ^{2} \frac{\phi }{2}\right )

Putting the value of I_{1} from eqn. (i), we get

I=\frac{I_{m}}{9}\left ( 1+8\cos ^{2} \frac{\phi }{2}\right )

 

Posted by

Divya Prakash Singh

View full answer