Get Answers to all your Questions

header-bg qa

Let   \mathrm {a}  and  \mathrm {b}  respectively be the semi-transverse and semiconjugate axes of a hyperbola whose eccentricity satisfies the equation \mathrm {9 e^2-18 e+5=0} . If   \mathrm {S(5,0)}  is a focus and   \mathrm {5 x=9}  is the corresponding directrix of this hyperbola, then \mathrm {a^2-b^2}   is equal to
 

Option: 1

-7


Option: 2

-5


Option: 3

5


Option: 4

7


Answers (1)

best_answer

S(5,0)  is the focus  \mathrm { \therefore a e=5 ......(i)}  


\mathrm { 5 x=9\: \: i.e., x=\frac{9}{5} \: \: is \: \: the\: \: directrix \therefore \frac{a}{e}=\frac{9}{5}......(ii) }


From (i) and (ii), we get   \mathrm { a=3 \: \: and\: \: e=\frac{5}{3} } 


Now,  \mathrm {b^2=a^2\left(e^2-1\right)=9\left(\frac{25}{9}-1\right)=16 }


Hence, \mathrm {a^2-b^2=9-16=-7 } 

Posted by

Divya Prakash Singh

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE