Get Answers to all your Questions

header-bg qa

Let A be a point on the x-axis. Common tangents are drawn from A to the curves x^{2}+y^{2}=8 and \mathrm{y}^{2}=16 \mathrm{x}. If one of these tangents touches the two curves at \mathrm{Q} and \mathrm{R}, then (\mathrm{QR})^{2} is equal to  

Option: 1

81


Option: 2

72


Option: 3

76


Option: 4

64


Answers (1)

best_answer


y^{2}=16 x \quad
Tangent \quad x^{2}+y^{2}=8
y=m x+\frac{4}{m} \quad Tangent
y=m x \pm 2 \sqrt{2} \sqrt{1+m^{2}}
\frac{4}{m}= \pm 2 \sqrt{2} \sqrt{1+m^{2}}
\frac{16}{\mathrm{~m}^{2}}=8+8 \mathrm{~m}^{2}
8 m^{4}+8 m^{2}=16
m^{4}+\mathrm{m}^{2}=2
m^{2}=1,-2
Let m=1
\underline{m>1}
\therefore \mathrm{y}=\mathrm{x}+4

Point of tangecy at parabola
Q\left(\frac{4}{m^{2}}, \frac{8}{m}\right)
Q(4,8)

Point of tangency at circle eqh at tangent at R\left(x_{1}, y_{1}\right) is \mathrm{T}=0
\mathrm{xx}_{1}+\mathrm{yy} \mathrm{y}_{1}=8

Comparison with

x-y+4=0
\frac{x_{1}}{1}=\frac{y_{1}}{-1}=-\frac{8}{4}
\mathrm{x}_{1}=-2 \quad \mathrm{y}_{1}=2
\mathrm{R}(-2,2)
Now  Q R^{2}=\sqrt{(4+2)^{2}+(8-2)^{2}}
\mathrm{QR}^{2}=72

Posted by

admin

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE