Get Answers to all your Questions

header-bg qa

Let be the r^{th}  term of an A.P. whose first term is a and common difference is d.

If for some positive integers m,n,m\neq n,T_{m}=\frac{1}{n},\: and\: T_{n}=\frac{1}{m}, then a-d equals

Option: 1

1/mn


Option: 2

1


Option: 3

0


Option: 4

\frac{1}{m}+\frac{1}{n}


Answers (1)

best_answer

Use the concept of

General term of an A.P.

T_{n}= a+\left ( n-1 \right )d

a\rightarrow First term

n\rightarrow number of term

d\rightarrow common difference

 

 Given:

T_{m}=\frac{1}{n}=a+(m-1)d

T_{n}=\frac{1}{m}=a+(n-1)d

Subtracing above 2 equations

\therefore \:\frac{1}{n}-\frac{1}{m}=(m-n)d

\therefore \:\frac{m-n}{mn}=(m-n)d

\therefore \: d=\frac{1}{mn}

From (i) \frac{1}{n}=a+\frac{m-1}{mn}

a=\frac{1}{n}-\frac{m-1}{mn}=\frac{1}{mn}

\therefore a-d=\frac{1}{mn}-\frac{1}{mn}=zero

Posted by

Divya Prakash Singh

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE