Get Answers to all your Questions

header-bg qa

Let \mathrm{m}_1$, and $\mathrm{m}_2  be the slopes of the tangents drawn from the point \mathrm{P}(4,1)  to the hyperbola \mathrm{H}: \frac{y^2}{25}-\frac{x^2}{16}=1. If \mathrm{Q}  is the point from which the tangents drawn to \mathrm{H} have slopes \left|\mathrm{m}_1\right| and \left|\mathrm{m}_2\right| and they make positive intercepts \alpha and \beta on the x-axis, then \mathrm{ \frac{(P Q)^2}{\alpha \beta}} is equal to

 

Option: 1

8


Option: 2

-


Option: 3

-


Option: 4

-


Answers (1)

best_answer

Equation of tangent to the hyperbola \mathrm{\frac{y^2}{a^2}-\frac{x^2}{b^2}=1}
\mathrm{y=m x \pm \sqrt{a^2-b^2 m^2}}
passing through (4,1)
\begin{aligned} & 1=4 \mathrm{~m} \pm \sqrt{25-16 \mathrm{~m}^2} \Rightarrow 4 \mathrm{~m}^2-\mathrm{m}-3=0 \\ & \Rightarrow \mathrm{m}=1, \frac{-3}{4} \end{aligned}

Equation of tangent with positive slopes 1 \& \frac{3}{4}
\left.\begin{array}{c} 4 y=3 x-16 \\ y=x-3 \end{array}\right\} \text { with positive intercept on } x \text {-axis. }
\alpha=\frac{16}{3}, \beta=3
Intersection points:

\mathrm{Q:\left ( -4,-7 \right )}

\mathrm{P:\left ( 4,1 \right )}

\mathrm{PQ^{2}:\left ( 128 \right )}

\mathrm{\frac{PQ^{2}}{\alpha \beta }=\frac{128}{16}=8}

Posted by

sudhir.kumar

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE