Get Answers to all your Questions

header-bg qa

Let  \mathrm{y=y(x), x>1}  be the solution of the diffrential equation \mathrm{(x-1) \frac{d y}{d x}+2 x y=\frac{1}{x-1}, \text { with } y(2)=\frac{1+e^{4}}{2 e^{4}}} . If \mathrm{y(3)=\frac{e^{\alpha}+1}{\beta e^{\alpha}}} then the value of \mathrm{\alpha +\beta } is equal to

Option: 1

14


Option: 2

-


Option: 3

-


Option: 4

-


Answers (1)

best_answer

\mathrm{\frac{d y}{d x}+\left(\frac{2 x}{x-1}\right) y=\frac{1}{(x-1)^{2}}} \\

\mathrm{I \cdot F \cdot=e^{\int \frac{2 x}{x-1} d x}}

\mathrm{\text { Now } \int \frac{2 x}{x-1} d x }\\

\mathrm{= 2 \left[\int \frac{x-1}{x-1} d x+\int \frac{1}{x-1} d x\right]} \\

\mathrm{= 2[x+\log (x-1)]}

\mathrm{\therefore I. F =e^{2 x+\log (x-1)^{2}}} \\

           \mathrm{=(x-1)^{2} \cdot e^{2 x}} \\

\mathrm{\therefore y \cdot(x-1)^{2} e^{2 x}=\int \frac{1}{(x-1)^{2}} \cdot(x-1)^{2} e^{2 x} d x}

\mathrm{\Rightarrow y(x-1)^{2} e^{2 x}=\frac{e^{2 x}}{2}+c} \\

\mathrm{\Rightarrow y=\frac{1}{2(x-1)^{2}}+\frac{c}{e^{2 x} \cdot(x-1)^{2}}}

\mathrm{As\: y(2)=\frac{1+e^{4}}{2 e^{4}}}

\mathrm{\Rightarrow \frac{1+e^{4}}{2 e^{4}}=\frac{1}{2}+\frac{c}{e^{4}}} \\

\mathrm{\Rightarrow \frac{1+e^{4}}{2 e^{4}}=\frac{e^{4}+2 c}{2 e^{4}}} \\

\mathrm{\Rightarrow c=\frac{1}{2}}

Putting \mathrm{x=3}

\mathrm{y(3) =\frac{1}{2 \cdot 4}+\frac{1}{2 e^{6} \cdot(4)}} \\

         \mathrm{=\frac{e^{6}+1}{8 e^{6}}} \\

\mathrm{\therefore \quad \alpha=6, \,\, \beta=8 \Rightarrow \alpha+\beta=14 }

Hence answer is 14

Posted by

jitender.kumar

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE