Get Answers to all your Questions

header-bg qa

Let S_{1}\; and\; S_{2} be the two slits in Young’s double slit experiment. If central maxima is observed at P and angle \angle S_{1}PS_{2}=\theta , then the fringe width for the light of wavelength \lambda will be. (Assume \theta to be a small angle)

Option: 1

\frac{\lambda }{\theta }        


Option: 2

\lambda \theta


Option: 3

\frac{2\lambda }{\theta }


Option: 4

\frac{\lambda }{2\theta }


Answers (1)

best_answer

 

Fringe Width -

\beta = \frac{\lambda D}{d}
 

- wherein

\beta = y_{n+1}-y_{n}

y_{n+1}= Distance of\left ( n+1 \right )^{th}

Maxima= \left ( n+1 \right )\frac{\lambda D}{d}

y_{n}=Distance of n^{th}

 maxima = \frac{n\lambda D}{d}

 

 

In \Delta S_{1}PO

tan\theta =\frac{\theta }{2}=\frac{d/2}{D}

As D> > d

\ \theta is very small.     

\Rightarrow tan \frac{\theta }{2}\approx \frac{\theta }{2}

\Rightarrow \frac{\theta }{2}=\frac{d}{2D}\Rightarrow \frac{D}{d}=\frac{1}{\theta }\Rightarrow\; Fringe\; width=\frac{\lambda D}{d}=\frac{\lambda }{\theta }

 

Posted by

sudhir.kumar

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE