Get Answers to all your Questions

header-bg qa

Let \mathrm{O} be the vertex and \mathrm{Q} be any point on the parabola \mathrm{x^{2}=8y}, If the point \mathrm{P} divides the line segment \mathrm{OQ} internally in the ratio \mathrm{1: 3}, then the locus of \mathrm{P} is
 

Option: 1

\mathrm{y^2=2 x}
 


Option: 2

\mathrm{x^2=2 y}
 


Option: 3

\mathrm{x^2=y}
 


Option: 4

\mathrm{y^2=x}


Answers (1)

\mathrm{O P: P Q=1: 3}
Let the parametric co-ordinates of \mathrm{Q\: be \: \left(4 t, 2 t^2\right)} We have, by section formula \mathrm{\alpha=\frac{4 t+0}{4}=t\: and \: \beta=\frac{2 t^2+0}{4}=\frac{t^2}{2}} Eliminating \mathrm{' t '}, we get the locus of \mathrm{P(\alpha, \beta) \: as \: \alpha^2=2 \beta}

Thus the locus is \mathrm{x^2=2 y}

Posted by

Kshitij

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE