Get Answers to all your Questions

header-bg qa

Let the mean and the variance of 5 observations \mathrm{x_{1}, x_{2}, x_{3}, x_{4}, x_{5} be \frac{24}{5} and \frac{194}{25}}respectively.
If the mean and variance of the first 4 observation are \frac{7}{2}$ and $a respectively, then \left(4 a+x_{5}\right) is equal to:

Option: 1

13


Option: 2

15


Option: 3

17


Option: 4

18


Answers (1)

\mathrm{\text { Mean }=\frac{24}{5} }

\mathrm{\Rightarrow \frac{x_{1}+x_{2}+x_{3}+x_{4}+x_{5}}{5}=\frac{24}{5}}

\mathrm{\Rightarrow \quad x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=24}           ..........(i)

\mathrm{Mean\: of\: x_{1}, x_{2}, x_{3}, x_{4}=\frac{7}{2}}

\mathrm{\Rightarrow \quad \frac{x_{1}+x_{2}+x_{3}+x_{4}}{4}=\frac{7}{2}} \\

\mathrm{\Rightarrow x_{1}+x_{2}+x_{3}+x_{4}=14 } \\                    ............(ii)

\mathrm{\Rightarrow x_{5}=10 }                          [from (i) and (ii)]

\mathrm{\text { Variance }=\frac{194}{25}} \\

\mathrm{\Rightarrow \frac{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+x_{5}^{2}}{5}-\frac{576}{25}=\frac{194}{25} } \\

\mathrm{\Rightarrow x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+x_{5}^{2}=154} \\

\mathrm{\left.\Rightarrow x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=54 \text { (as } x_{5}=10\right)}

\mathrm{\therefore \text { Variance of } x_{1}, x_{2}, x_{3}, x_{4}} \\

\mathrm{\frac{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}}{4}-\frac{49}{4}=a }\\

\mathrm{\Rightarrow a=\frac{54}{4}-\frac{49}{4} }\\

\mathrm{\Rightarrow a=\frac{5}{4}} \\

\mathrm{\therefore 4 a+x_{5}=5+10=15}

Hence the correct answer is option 2.

Posted by

Kshitij

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE