Get Answers to all your Questions

header-bg qa

Let the tangent and normal at the point \left ( 3\sqrt{3},1 \right ) on the ellipse \mathrm{\frac{x^{2}}{36}+\frac{y^{2}}{4}=1} meet the y-axis at the points A and B respectively. Let the circle C be drawn taking AB as a diameter and the line \mathrm{x=2\sqrt{5}} intersect C at the points P and Q. If the tangents at the points P and Q on the circle intersect at the point \left ( \alpha, \beta \right ), then \left ( \alpha^{2}-\beta^{2} \right ) is equal to

Option: 1

\frac{305}{4}


Option: 2

60


Option: 3

\frac{314}{5}


Option: 4

61


Answers (1)

best_answer

Given ellipse \mathrm{\frac{x^{2}}{36}+\frac{y^{2}}{4}=1}

\mathrm{\frac{x}{4\sqrt{3}}+\frac{y}{4}=1}

\mathrm{y=4}

\begin{aligned} & \frac{x}{4}-\frac{4}{4 \sqrt{3}}=\frac{2}{\sqrt{3}} \\ \end{aligned}

\begin{aligned} & \mathrm{y}=-8 \\ \end{aligned}

\begin{aligned} & x^2+y^2+4 \mathrm{y}-32=0 \\ \end{aligned}

\mathrm{\begin{aligned} & \mathrm{~h} x+\mathrm{ky}+2(\mathrm{y}+\mathrm{k})-32=0 \\ \end{aligned}}

\begin{aligned} & \mathrm{k}=-2 \\ \end{aligned}

\begin{aligned} & \mathrm{hx}+2 \mathrm{k}-32=0 \\ \end{aligned}

\begin{aligned} & \mathrm{hx}=36 \\ & \alpha=\mathrm{h}=\frac{36}{2 \sqrt{5}} \\ \end{aligned}

\begin{aligned} & \beta=\mathrm{k}=-2 \\ & \alpha^2-\beta^2=\frac{304}{5} \end{aligned}

 

Posted by

Gaurav

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE