Get Answers to all your Questions

header-bg qa

if \int x^5e^{-4x^3}dx = \frac{1}{48}e^{-4x^3}f(x) + C,

where C is a constant of integration, then f(x) is equal to

  • Option 1)

    -2x^3-1

  • Option 2)

    -4x^3-1

  • Option 3)

    -2x^3+1

  • Option 4)

    4x^3+1

Answers (1)

best_answer

 

Integration By PARTS -

Let u and v are two functions then 

\int u\cdot vdx=u\int vdx-\int \left ( \frac{du}{dx}\int vdx \right )dx

- wherein

Where u is the Ist function v is he IInd function

 

\int x^{5}e^{-4x^{3}}dx=\frac{1}{48} e^{-4x^{3}} f(x)+C

put x^{3}=t

3 x^{2}dx=dt

Now,

=\int x^{3}e^{-4x^{3}}x^{2}dx

=\frac{1}{3}\int te^{-4t}dt

from the concept of Integration by parts 

=\frac{1}{3}\left [ t\cdot \frac{e^{-4t}}{-4}-\int \frac{e^{-4t}}{-4} dt \right ]

=-\frac{e^{-4t}}{48}\left [ 4t+1 \right ]+C

Substituiting back x^{3}=t

\therefore -\frac{e^{-4x^{3}}}{48}\left [ 4x^{3}+1 \right ]+C

\therefore f(x)=-1-4x^{3}

 

 


Option 1)

-2x^3-1

Option 2)

-4x^3-1

Option 3)

-2x^3+1

Option 4)

4x^3+1

Posted by

admin

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE