Get Answers to all your Questions

header-bg qa

Let f (x) be a polynomial of degree 4 having extreme values at x=1 and x=2.

If \lim_{x\rightarrow 0}\left ( \frac{f\left ( x \right )}{x^{2}}+1 \right )=3, then f (−1) is equal to :

  • Option 1)

    \frac{9}{2}

  • Option 2)

    \frac{5}{2}

  • Option 3)

    \frac{3}{2}

  • Option 4)

    \frac{1}{2}

 

Answers (2)

best_answer

As we learned,

 

Method for maxima or minima -

First and second derivative method :

Step\:1.\:\:find\:values\:of\:x\:for\:\frac{dy}{dx}=0

Step\:2.\:\:x=x_{\circ }\:\:is\:a\:point\:of\:local\:maximum\:if\:f'(x)>0  and\:local\:minimum\:if\;f'(x)<0.

Step\:\:3.\:\:\:x=x_{\circ }\:\:is\:a\:point\:of\:local\:miximum\:if  f''(x)<0\:\:and\:local\:minimum\:if\:f''(x)>0

- wherein

Where\:\:y=f(x)

\frac{dy}{dx}=f'(x)

 

 

\lim_{x\rightarrow 0}\left ( 1+\frac{f\left ( x \right )}{x^{2}} \right )=3

\Rightarrow \: \lim_{x\rightarrow 0}\frac{f\left ( x \right )}{x^{2}}=2

\therefore Let f\left ( x \right )=ax^{4}+bx^{3}+2x^{2}+0x+0

f'\left ( x \right )=4ax^{3}+3bx^{2}+4x

f'\left ( 1 \right )=0 and f'\left ( 2 \right )=0

4a+3b+4=0 ; 32a+12b+8=0

on solving a=\frac{1}{2}  and b= -2

Thus f\left ( x \right )=\frac{1}{2}x^{4}-2x^{3}+2x^{2}

f\left ( -1 \right )=\frac{1}{2}+2+2=\frac{9}{2}


Option 1)

\frac{9}{2}

Option 2)

\frac{5}{2}

Option 3)

\frac{3}{2}

Option 4)

\frac{1}{2}

Posted by

Himanshu

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE