Get Answers to all your Questions

header-bg qa

If A=\sin ^{2}x+\cos ^{4}x, then for all real x

  • Option 1)

    1\leq A\leq 2\;

  • Option 2)

    \; \frac{3}{4}\leq A\leq \frac{13}{16}\;

  • Option 3)

    \; \frac{3}{4}\leq A\leq 1\;

  • Option 4)

    \; \frac{13}{16}\leq A\leq 1

 

Answers (1)

best_answer

As we learnt in

Trigonometric Identities -

\sin ^{2}\Theta + \cos ^{2}\Theta = 1

1 + \tan ^{2}\Theta = \sec ^{2}\Theta

1 + \cot ^{2}\Theta = cosec ^{2}\Theta

- wherein

They are true for all real values of \Theta

 

 A = \sin ^{2}x+ \cos^{4}x =1 - \cos^{2}x +\cos^{4}x = \cos^{4}x - 2 \cos^{2}x \times \frac{1}{2}+\frac{1}{4}+\frac{3}{4}

A = (\cos^{2}x - \frac{1}{2})^{2}+\frac{3}{4}

Range of A depends on \cos^{2}x . Minimum value occurs at cos^{2}x=\frac{1}{2},\ \: \: \: \: \: \: \: \: A=\frac{3}{4} 

Maximum value occurs at cos^{2}x=\frac{1}{2},\ \, \, \, \, \, \, \, A = \frac{1}{4}\: \: \: \: \frac{1-3}{4} = 1

For all other values of \cos^{2}x , A varies between these two values[ function is continues]

A \varepsilon \left [ \frac{3}{4} , 1\right ]


Option 1)

1\leq A\leq 2\;

This option is incorrect.

Option 2)

\; \frac{3}{4}\leq A\leq \frac{13}{16}\;

This option is incorrect.

Option 3)

\; \frac{3}{4}\leq A\leq 1\;

This option is correct.

Option 4)

\; \frac{13}{16}\leq A\leq 1

This option is incorrect.

Posted by

prateek

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE