Get Answers to all your Questions

header-bg qa

\int \left ( \frac{2a+x}{a+x} \right )\sqrt{\frac{a-x}{a+x}}dx=

  • Option 1)

    \sqrt{a^{2}-x^{2}}-2a\sqrt{\frac{a-x}{a+x}}+c

  • Option 2)

    -\sqrt{a^{2}-x^{2}}-2a\sqrt{\frac{a-x}{a+x}}+c

  • Option 3)

    \frac{1}{a}\tan^{-1}\frac{x}{a}+ln|x+\sqrt{a^{2}-x^{2}}|+c

  • Option 4)

    \frac{1}{2a}ln|\frac{a+x}{a-x}|+\sin^{-1}\frac{x}{a}+c

 

Answers (1)

best_answer

As we learnt

Special type of indefinite integration -

Integrals of the form :

(i)f(\sqrt{a^{2}-x^{2}}) , (ii)f(\sqrt{x^{2}-a^{2}})

(iii)f(\sqrt{a^{2}+x^{2}}), (iv)f(a^{2}+x^{2})

(v)f\left ( \sqrt{\frac{a-x}{a+x}}\right ), (vi)f\left ( \sqrt{\frac{a+x}{a-x}}\right )

(vii)f\left ( \sqrt{\frac{x-a}{b-x}} \right ), (viii)f\left ( \sqrt{(x-a)(x-b)}\right )

- wherein

Working rule :

for (i) put x=a\sin \Theta or a \cos \Theta

for (ii) Put x=a\sec \Theta or a \, cosec\Theta

for (iii) and (iv) Put x=a\tan \Theta or a\cot \Theta

for (v) and (vi) Put x=a\cos 2 \Theta

for (vii) and (viii) Put x=a\cos ^{2}\Theta +b\sin ^{2}\Theta

 

 Put \theta = co{s^{ - 1}}\frac{x}{a}\left( { - a < x < a} \right).Then 0 < \theta < \pi 

and I = - a\int {\frac{{\left( {2 + \cos \theta } \right)\left( {1 - \cos \theta } \right)}}{{1 + \cos \theta }}} d\theta

=- a\int {\left\{ {\left( {1 - \cos \theta } \right) + \frac{{1 - \cos \theta }}{{1 + \cos \theta }}} \right\}} d\theta= - a\left( {2\tan \frac{\theta }{2} - \sin \theta } \right) + c

=\sqrt {{a^2} - {x^2}} - 2a\sqrt {\frac{{a - x}}{{a + x}}} + c

 


Option 1)

\sqrt{a^{2}-x^{2}}-2a\sqrt{\frac{a-x}{a+x}}+c

Option 2)

-\sqrt{a^{2}-x^{2}}-2a\sqrt{\frac{a-x}{a+x}}+c

Option 3)

\frac{1}{a}\tan^{-1}\frac{x}{a}+ln|x+\sqrt{a^{2}-x^{2}}|+c

Option 4)

\frac{1}{2a}ln|\frac{a+x}{a-x}|+\sin^{-1}\frac{x}{a}+c

Posted by

gaurav

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE