Get Answers to all your Questions

header-bg qa

Let f(x)=\left\{\begin{matrix} -1,\: \: \: -2\leq x< 0\\ x^{2}-1, \: \: \: 0\leq x\leq 2 \end{matrix}\right.   and  g(x)=\left | f(x) \right |+f(\left | x \right |).

Then, in the interval (-2,2), g is:

  • Option 1)

     

    not differentiable at two points

  • Option 2)

     

    differentiable at all points

  • Option 3)

     

    not differentiable at one point

  • Option 4)

     

    not continuous

Answers (1)

best_answer

 

Condition for differentiability -

A function  f(x) is said to be differentiable at  x=x_{\circ }  if   Rf'(x_{\circ })\:\:and\:\:Lf'(x_{\circ })   both exist and are equal otherwise non differentiable

-

 

 

Properties of differentiable functions -

At every corner point  f(x) is continuous but not differentiable.

ex:    | x - a |  is continuous but not differentiable at  x = a  for  a > 0 

- wherein

 

 

y=f(x)

only one nondifferential point at x=1

 

 


Option 1)

 

not differentiable at two points

Option 2)

 

differentiable at all points

Option 3)

 

not differentiable at one point

Option 4)

 

not continuous

Posted by

admin

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE