The sum of an infinite geometric series of real number is 14, and the sum of the cube of the terms of this series is 392 then the first term of the series is

  • Option 1)

    -14

  • Option 2)

    10

  • Option 3)

    7

  • Option 4)

    -5

 

Answers (1)

As learnt in

Sum of infinite terms of a GP -

a+ar+ar^{2}+- - - - -= \frac{a}{1-r}\\here \left | r \right |<1

- wherein

a\rightarrow first term

r\rightarrow common ratio

 

 

S_{\infty}=14= \frac{a}{1-r}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:(i)

 

Also if series is a^{3},a^{3}r^{3}, a^{3}r^{6}..........\infty

S_{\infty'}=392= \frac{a^{3}}{1-r^{3}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:(ii)

 

Divide (i) and (ii)

\frac{S^{3}_{\infty}}{S_{\infty'}}=\frac{14^{3}}{392}=\frac{\frac{a^{3}}{(1-r)^{3}}}{\frac{a^{3}}{1-r^{3}}}

\frac{196 \times 14}{392}=\frac{1-r^{3}}{(1-r)^{3}}=\frac{1-r+r^{2}}{(1-r)^2}

7(1-r)^{2}=1+r^{2}-r

7r^{2}+7-14r=r^{2}+1-r

6r^{2}-13r +6=0

6r^{2}-9r -4r+6=0\:\:\:\:\:\:\:\:\:\:\:\:r=\frac{2}{3},\frac{3}{2}

For r=\frac{2}{3}\:\:\:\:\:\:\:\:\:\:\:\:a=7

 

 


Option 1)

-14

This option is incorrect.

Option 2)

10

This option is incorrect.

Option 3)

7

This option is correct.

Option 4)

-5

This option is incorrect.

Preparation Products

Knockout BITSAT 2021

It is an exhaustive preparation module made exclusively for cracking BITSAT..

₹ 4999/- ₹ 2999/-
Buy Now
Knockout BITSAT-JEE Main 2021

An exhaustive E-learning program for the complete preparation of JEE Main and Bitsat.

₹ 27999/- ₹ 16999/-
Buy Now
Exams
Articles
Questions