Get Answers to all your Questions

header-bg qa

Two sides of a parallelogram are along the lines, x + y =3 and x - y + 3 = 0 . If its diagonals intersect at (2,4) , then one of its vertex is:

  • Option 1)

    (3,6)

  • Option 2)

    (2,6)

  • Option 3)

    (3,5)

  • Option 4)

    (2,1)

Answers (1)

best_answer

 

Mid-point formula -

x= \frac{x_{1}+x_{2}}{2}

y= \frac{y_{1}+y_{2}}{2}

 

- wherein

If the point P(x,y) is the mid point of line joining A(x1,y1) and B(x2,y2) .

Two lines 

x+y=3 \: \: and\: \: x-y=-3   intersects at A (0,3)

Point C is  (x_{1},y_{1})

So, 

\frac{x_{1}+0}{2}=2  ,    \frac{y_{1}+4}{2}=4

=>C(x_{1},y_{1})=C(4,5)

So, Equation of BC is   x-y=-1

and equation of CD is  x+y=9

Solve  x+y=9   and   x-y=-3

D(3,6)

 

 


Option 1)

(3,6)

Option 2)

(2,6)

Option 3)

(3,5)

Option 4)

(2,1)

Posted by

admin

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE