Get Answers to all your Questions

header-bg qa

Sodium light of wavelengths \mathrm{650 \mathrm{~nm} \; and\; 655 \mathrm{~nm}} is used to study diffraction at a single slit of aperture \mathrm{0.5 \mathrm{~mm.}} The distance between the slit and the screen is \mathrm{2.0 \mathrm{~m.}} The separation between the positions of the first maxima of diffraction pattern obtained in the two cases is __________\mathrm{10^{-5} \mathrm{~m}}.

Option: 1

3


Option: 2

-


Option: 3

-


Option: 4

-


Answers (1)

best_answer

\mathrm{b= 0.5\times 10^{-3}m= 5\times 10^{-4}m}
\mathrm{D= 2m}

For maxima,
\mathrm{\beta = \frac{\left ( 2n+1 \right )}{2}\pi= \frac{\pi b\sin \theta }{\lambda }}
For First maxima, \mathrm{n= 1}
\mathrm{\frac{3\pi}{2}= \frac{\pi b\sin \theta }{\lambda }}
\mathrm{\sin \theta= \frac{3\lambda}{2b}




Since , \mathrm{\lambda } is very small
\mathrm{\sin \theta \simeq \tan \theta = \frac{3\lambda }{2b}= \frac{y}{D}}
\mathrm{y = \frac{3 }{2} \frac{\lambda }{b}D}

\mathrm{For\; \lambda _{1}= 650\, nm,}
\mathrm{y_{1}= \frac{3}{2}\times \frac{650\times 10^{-9}\times 2}{5\times 10^{-4}}}
\mathrm{y_{1}= 390\times 10^{-5}m}

\mathrm{For\, \lambda _{2}= 655\, nm}
\mathrm{y_{2}= \frac{3}{2}\times \frac{655\times 10^{-9}\times 2}{5\times 10^{-4}}}
\mathrm{y_{2}= \393\times 10^{-5}m}

\mathrm{\Delta y= y_{2}-y_{1}= 3\times 10^{-5}m}

 

Posted by

Rishabh

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE