If A+B= \begin{vmatrix} 7&4 \\ 8& 9\end{vmatrix} and A-B= \begin{vmatrix} 1&2 \\ 0& 3\end{vmatrix}

Then the value of A is?

  • Option 1)

    \begin{bmatrix} 3&1 \\ 4& 3\end{bmatrix}

  • Option 2)

    \begin{bmatrix} 4&3\\ 4& 6\end{bmatrix}

  • Option 3)

    \begin{bmatrix} 6&2\\ 8& 6\end{bmatrix}

  • Option 4)

    \begin{bmatrix} 7&8\\ 6& 6\end{bmatrix}

 

Answers (1)

As learnt in concept

Addition of Matrices -

Matrices of the same size can be added such that their corresponding elements get added.

- wherein

 

 A+B = \begin{bmatrix} 7 &4 \\ 8&9 \end{bmatrix}

A- B = \begin{bmatrix} 1 &2 \\ 0&3 \end{bmatrix}

2A = \begin{bmatrix} 8 &6 \\ 8&12 \end{bmatrix}

A = \begin{bmatrix} 4 &3 \\ 4&6 \end{bmatrix}

 


Option 1)

\begin{bmatrix} 3&1 \\ 4& 3\end{bmatrix}

Incorrect option

Option 2)

\begin{bmatrix} 4&3\\ 4& 6\end{bmatrix}

Correct option

Option 3)

\begin{bmatrix} 6&2\\ 8& 6\end{bmatrix}

Incorrect option

Option 4)

\begin{bmatrix} 7&8\\ 6& 6\end{bmatrix}

Incorrect option

Preparation Products

Knockout BITSAT 2021

It is an exhaustive preparation module made exclusively for cracking BITSAT..

₹ 4999/- ₹ 2999/-
Buy Now
Knockout BITSAT-JEE Main 2021

An exhaustive E-learning program for the complete preparation of JEE Main and Bitsat.

₹ 27999/- ₹ 16999/-
Buy Now
Exams
Articles
Questions