Get Answers to all your Questions

header-bg qa

If y= e^{\sin^{2}x} ; dy/dx equals 

  • Option 1)

    e^{\cos ^{2 }x}

  • Option 2)

    e^{\sin 2x}

  • Option 3)

    e^{\sin^{2}x \cdot \sin 2x}

  • Option 4)

    e^{\sin 2x }\cdot 2 \cos 2x

 

Answers (1)

best_answer

As we have learned

Chain Rule for differentiation (indirect) -

Let  y = f(x)  is not in standard form then 

\frac{dy}{dx}=\frac{dy}{du}\times \frac{du}{dx}

ex:\:\:y=sin(ax+b)

Let\:\;u=(ax+b)

then\:\:y=sin \:u

so\:\:\frac{dy}{du}=cos \:u\:\:and\:\:\frac{du}{dx}=a

\therefore \frac{dy}{dx}=\frac{dy}{du}\times \frac{du}{dx}=a\:cos \:u

=a\:cos(ax+b)

 

- wherein

Where\;\:y=f(u)\:\;and\;\;u=f(x)

 

 \frac{dy}{dx} =\frac{dy}{dx}\cdot \frac{du}{dx}

Let u= \sin ^{2}x , v= \sin x  then u= v^{2}   and y=e^{u}

\Rightarrow \frac{dy}{dx} = \frac{de^{u}}{du}*\frac{dv^{2}}{dv}*\frac{d(\sin x)}{dx}

\Rightarrow \frac{dy}{dx} = e^{u}2v* \cos x =e^{\sin ^{2}x} * 2\sin x*\cos x

\Rightarrow \frac{dy}{dx} = e^{\sin ^{2}x}\sin 2x

 

 

 

 

 


Option 1)

e^{\cos ^{2 }x}

Option 2)

e^{\sin 2x}

Option 3)

e^{\sin^{2}x \cdot \sin 2x}

Option 4)

e^{\sin 2x }\cdot 2 \cos 2x

Posted by

Himanshu

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE