Get Answers to all your Questions

header-bg qa

\lim_{x\rightarrow \pi /4}( \sin x - \cos x)   equals 

  • Option 1)

    -1

  • Option 2)

    0

  • Option 3)

    1/\sqrt2

  • Option 4)

    \sqrt2

 

Answers (1)

best_answer

As we have learned

Limit of Sum and difference -

Limit of sum and difference equals sum difference of the individual limits.
 

\lim_{x\rightarrow a}f(x)\pm g(x)=\lim_{x\rightarrow a}f(x)\pm \lim_{x\rightarrow a}g(x)

-

 

\lim_{x\rightarrow \pi /4}(\sin x-\cos x)= \lim_{x\rightarrow \pi /4} \sin x- \lim_{x\rightarrow \pi /4} \cos x

\sin \pi /4- \cos \pi /4= \frac{1}{\sqrt2}-\frac{1}{\sqrt2}=0 

 

 

 

 

 


Option 1)

-1

Option 2)

0

Option 3)

1/\sqrt2

Option 4)

\sqrt2

Posted by

Himanshu

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE