Get Answers to all your Questions

header-bg qa

If vector 2\vec{i}+3\vec{j}-2\vec{k} and \vec{i}+\vec{2j}+\vec{k} represents the adjacent sides of any parallelogram then the lenght of diagonal of parallelogram are

  • Option 1)

    \sqrt{35},\sqrt{35}

  • Option 2)

    \sqrt{35}, \sqrt{11}

  • Option 3)

    \sqrt{25},\sqrt{11}

  • Option 4)

    None of these

 

Answers (1)

best_answer

 

Magnitude of a Vector -

The length of the directed line segment \overrightarrow{AB} is called its magnitude.

- wherein

It is denoted by \mid \overrightarrow{AB\mid }

 

 Diagonal  = 2i+3j-2k+i+2j+k

\vec{d}=3i+5j-k

\left | \vec{d} \right |=\sqrt{3^{2}+5^{2}+1^{2}}

=\sqrt{9+25+1}

=\sqrt{35}

Similarly 

\vec{d}=i+j-3k

\left | \vec{d} \right |=\sqrt{1+1+9}

=\sqrt{11}


Option 1)

\sqrt{35},\sqrt{35}

Incorrect Option

Option 2)

\sqrt{35}, \sqrt{11}

Correct option

Option 3)

\sqrt{25},\sqrt{11}

Incorrect Option

Option 4)

None of these

Incorrect Option

Posted by

divya.saini

View full answer