Get Answers to all your Questions

header-bg qa

Let 0 < \theta < \frac{\pi}{2} . If the eccentricity of the hyperbola \frac{x}{\cos^2\theta} - \frac{y}{\sin^2\theta} = 1 is greater than 2, then the length of its latus rectum lies in the interval:

  • Option 1)

    (3, \infty)

  • Option 2)

    \left(\frac{3}{2}, 2 \right ]

  • Option 3)

    (2,3]

  • Option 4)

    \left (1, \frac{3}{2} \right ]

Answers (1)

best_answer

 

Hyperbola -

Hyperbola is locus of all the points in a plane ,the difference of whose distance from two fixed point is constant.

- wherein

 

 

Length of latus Rectum -

\frac{2b^{2}}{a}

- wherein

For the Hyperbola

\frac{x^{2}}{a^{2}}- \frac {y^{2}}{b^{2}}= 1

\frac{x^{2}}{\cos ^{2}\theta }-\frac{y^{2}}{\sin ^{2}\theta }=1

given,\; \; \; \; e>2

Eccentricity of the hyperbola is 

e=\sqrt{1+\frac{b^{2}}{a^{2}}}

\therefore e=\sqrt{1+\tan ^{2}\theta }=\sec \left ( \theta \right )

As \sec \left ( \theta \right )>2\Rightarrow \cos \left ( \theta \right )<\frac{1}{2}

\Rightarrow \theta \equiv \left ( 60^{\circ},90^{\circ} \right )

Latus rectum 

LR=\frac{2b^{2}}{a}=\frac{2\sin ^{2}\theta }{\cos \theta }=\frac{2\left ( 1-\cos ^{2}\theta \right )}{\cos \theta }

=2\sec \theta -2\cos \theta

This is strictly increasing 

Latus Rectum  \equiv \left ( 3,00 \right )

 


Option 1)

(3, \infty)

Option 2)

\left(\frac{3}{2}, 2 \right ]

Option 3)

(2,3]

Option 4)

\left (1, \frac{3}{2} \right ]

Posted by

admin

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE