Get Answers to all your Questions

header-bg qa

Let z = \left (\frac{\sqrt3}{2} + \frac{i}{2} \right )^5 + \left (\frac{\sqrt3}{2} - \frac{i}{2} \right )^5 . If R(z) and I(z) respectively denote the real and imaginary parts of z, then :

  • Option 1)

    R(z) < 0 and I(z) > 0

  • Option 2)

    R(z) > 0 and I(z) >0

  • Option 3)

    R(z) = -3

  • Option 4)

     

    I(z) =0

Answers (1)

best_answer

 

Cube roots of unity -

z=\left ( 1 \right )^{\frac{1}{3}}\Rightarrow z=\cos \frac{2k\pi }{3}+i\sin \frac{2k\pi }{3}

k=0,1,2 so z gives three roots 

\Rightarrow 1,\frac{-1}{2}+i\frac{\sqrt{3}}{2}\left ( \omega \right ),\frac{-1}{2}-i\frac{\sqrt{3}}{2}\left ( \omega^{2} \right )

- wherein

\omega=\frac{-1}{2} +\frac{i\sqrt{3}}{2},\omega^{2}=\frac{-1}{2} -\frac{i\sqrt{3}}{2},\omega^{3}=1, 1+\omega+\omega^{2}=0

1,\omega,\omega^{2} are cube roots of unity.

Given 

z=(\frac{\sqrt 3}{2}+\frac{i}{2})^{5}+(\frac{\sqrt 3}{2}-\frac{i}{2})^{5}

z=(e^{i\frac{\pi}{6}})^{5}+(e^{-i\frac{\pi}{6}})^{5}

    =\cos \frac{5\pi}{6}+i\sin \frac{5\pi}{6}+\cos \frac{5\pi}{6}-i\sin \frac{5\pi}{6}

  =2\cos \frac{5\pi}{6}<0

Img(z)=0


Option 1)

R(z) < 0 and I(z) > 0

Option 2)

R(z) > 0 and I(z) >0

Option 3)

R(z) = -3

Option 4)

 

I(z) =0

Posted by

admin

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE