Get Answers to all your Questions

header-bg qa

If  g  is the acceleration due to gravity on the earth's surface,  the gain in the potential energy of an object of mass  m   raised from the surface of the earth to   a height equal to the radius  R   of the earth is :

  • Option 1)

    2mgR

  • Option 2)

    \frac{1}{2}mgR

  • Option 3)

    \frac{1}{4}mgR

  • Option 4)

    mgR

 

Answers (1)

best_answer

As we learnt in 

Force \; on \; object\; =\frac{GMm}{x^{2}}\; at\: x\; from \; centre \; of \; earth.

\therefore \; \; \; Work\; done=\frac{GMm}{x^{2}}dx

\therefore \; \; \int Work \; done=GMm\int_{R}^{2R}\frac{dx}{x^{2}}

\therefore \; \; \; Potential \; energy\; gained

=GMm\left [ -\frac{1}{x} \right ]_{R}^{2R}=\frac{GMm\times 1}{2R}

\therefore \; \; Gain \; in \; P.E.

=\frac{1}{2}mR\left ( \frac{GM}{R^{2}} \right )=\frac{1}{2}mgR\; \; \;\; \; \; \; \; \; \; \left [ \because g=\frac{GM}{R^{2}} \right ]

 

Work done against gravity when 'h' is not negligible -

W=\frac{mgh}{1+\frac{h}{R}}

W=work done

h\rightarrow height above surface of earth

R\rightarrow Radius of earth

- wherein

if h=R

W=\frac{1}{2}mgR

if h=nR

W=mgR\left ( \frac{n}{n+1} \right )

n\rightarrow times

n=1,2,3\cdot \cdot \cdot

 

F = \frac{Gm_{m}}{x^2} at \: x\ from\ centre\ of\ earth

dw = \frac{Gm_{m}}{x^2}dx = \int dx = Gm_{m} \int_{2R}^{R} \frac{dx}{x^2}

\therefore Potential\ energy\ gained = Gm_{m}|-\frac{1}{x}|

= \frac{Gm_{m}\times 1}{2R}

\therefore Gain\ in\ potential\ energy = \frac{1}{2}mR \left ( \frac{Gm}{R^2} \right )

= \frac{1}{2}mgR

 


Option 1)

2mgR

Incorrect

Option 2)

\frac{1}{2}mgR

Correct

Option 3)

\frac{1}{4}mgR

Incorrect

Option 4)

mgR

Incorrect

Posted by

divya.saini

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE