Get Answers to all your Questions

header-bg qa

Let   \frac{1}{x_{1}},\frac{1}{x_{2}},........,\frac{1}{x_{n}} 

(x_{i}\neq 0 for, i= 1,2....,n)

be in A.P. such that x_{1}=4 and x_{21}=20 If n is the least positive integer for which  x_{n}> 50, then \sum_{i=1}^{n}\left ( \frac{1}{x_{i}} \right )   is equal to :

 

 

  • Option 1)

    1/8

  • Option 2)

    3

  • Option 3)

    13/8

  • Option 4)

    13/4

 

Answers (2)

best_answer

As we have learned

General term of an A.P. -

T_{n}= a+\left ( n-1 \right )d

- wherein

a\rightarrow First term

n\rightarrow number of term

d\rightarrow common difference

 

 1/x_{1},1/x_{2},1/x_{3},.....,1/x_{n}

are in A.P

so first term = 1/4 

and 1/x_{21}= 1/20

T_{21}= 1/20= 1/4+20d

-1/5 = 20d \Rightarrow d= -1/100

thus 

1/x_{n}=1/4+(x-1)(-1/100)< 1/50

x-1> 23\Rightarrow n> 24

thus n=25

S_{25}= 1/4+1/4-1/100+1/4-2/100+.......25terms

= 25/4-\left ( \frac{1+2+3+.......+24}{100} \right )= 13/4

 

 

 

 

 


Option 1)

1/8

Option 2)

3

Option 3)

13/8

Option 4)

13/4

Posted by

Himanshu

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE