Get Answers to all your Questions

header-bg qa

The equation of an ellipse whose eccentricity \mathrm{e=\frac{1}{2}}, focus is (-1,1), and directrix is \mathrm{x+y+3=0} is \mathrm{7 x^2-2 x y+7 y^2+10 x+k y+7=0}, where \mathrm{k=}

 

Option: 1

22


Option: 2

-22


Option: 3

10


Option: 4

-10


Answers (1)

Let \mathrm{P\left(x_1, y_1\right)} be a point on the ellipse.
The focus is \mathrm{S(-1,1)} and the directrix is \mathrm{x+y+3=0} Then, by definition of ellipse
\mathrm{ P S=e P M }

\mathrm{ Or \left(x_1+1\right)^2+\left(y_1-1\right)^2=\frac{1}{4}\left(\frac{x_1+y_1+3}{\sqrt{2}}\right)^2 }

\mathrm{Or \: 8\left(x_1^2+y_1^2+2 x_1-2 y_1+1+1\right)=x_1^2+y_1^2+2 x_1 y_1+6 x_1+6 y_1+9}

The locus of \mathrm{P\left(x_1, y_1\right)} is

\mathrm{ 7 x^2-2 x y+7 y^2+10 x-22 y+7=0 }

\mathrm{ k=-22 }

Hence option 2 is correct.



 

Posted by

Kshitij

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE