Get Answers to all your Questions

header-bg qa

The interference pattern is obtained with two coherent light sources of intensity ratio \mathrm{4:1}. And the ratio \mathrm{\frac{I_{max}+I_{min}}{I_{max}-I_{min}}} is \mathrm{\frac{5}{x}}. Then, the value of \mathrm{x} will be equal to :

Option: 1

3


Option: 2

4


Option: 3

2


Option: 4

1


Answers (1)

best_answer

\mathrm{\frac{I_{1}}{I_{2}}=\frac{4}{1}} \\

\mathrm{I_{\text {max }}=\left(\sqrt{I_{1}}+\sqrt{I_{2}}\right)^{2}} \\

\mathrm{I_{\text {min }}=\left(\sqrt{I_{1}}-\sqrt{I_{2}}\right)^{2}}

\mathrm{I_{\text {max }}+I_{\text {min }} =2\left(I_{1}+I_{2}\right)} \\

\mathrm{I_{\text {max }}-I_{\text {min }} =4 \sqrt{I_{1}} \sqrt{I_{2}}} \\

\mathrm{\frac{I_{\text {max }}+I_{\text {min }}}{I_{\text {max }}-I_{\text {min }}}}\\\mathrm{=\frac{2\left(I_{1}+I_{2}\right)}{4 \sqrt{I_{1}} \sqrt{I_{2}}}} \\

                       \mathrm{=\frac{2(5)}{4(2)}=\frac{5}{4}} \\

\mathrm{\therefore x =4}

Hence the correct answer is option 2.

Posted by

seema garhwal

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE