Get Answers to all your Questions

header-bg qa

The ratio of maxium and minimum magnitudes of the resultant of two vectors \left | \vec{a} \right | and \left | \vec{b} \right |  is  3:1, Now \left | \vec{a} \right |=

Option: 1

\left | \vec{b} \right |


Option: 2

2\left | \vec{b} \right |


Option: 3

3\left | \vec{b} \right |


Option: 4

4\left | \vec{b} \right |


Answers (1)

best_answer

as we learned

Triangle law of vector Addition -

If two vector are represented by both magnitude and direction by two sides of triangle taken in same order then their resultant is represented by 3rd side of triangle. 

- wherein

Represents triangle law of vector Addition

 

 

\left | \vec{a}+\vec{b} \right |=\sqrt{a^2+b^2+2ab\cos\theta}

\left | \vec{a}+\vec{b} \right |_{max}=a+b  when \theta=0\degree

\left | \vec{a}+\vec{b} \right |_{min}=a-b   when \theta=180\degree

here

 \frac{a+b}{a-b}=\frac{3}{1} 

or

 a+b=3a-3b

or 2a=4b \: \Rightarrow a=2b

\left | \vec{a} \right |=2\left | \vec{b} \right |

Posted by

manish painkra

View full answer