Get Answers to all your Questions

header-bg qa

The ratio of root mean square velocity to average velocity of a gas molecule at a particular temperature is -

Option: 1

1.085 : 1


Option: 2

1 : 1.086


Option: 3

2 : 1.086


Option: 4

1.086 : 2


Answers (1)

best_answer

The two types of speeds are defined as -
Root mean square speed \mathrm{( \left.u_{\mathrm{rms}}\right)=\sqrt{\frac{3 R T}{M}}}
Average speed \mathrm{\left(u_{\text {av }}\right)=\sqrt{\frac{8 R T}{\pi M}}}

For the sarre gas, at a given temperature, M and T are same

therefore,
\mathrm{ \frac{u_{\text {rms }}}{u_{a v}}=\sqrt{\frac{3 R T}{M}}: \sqrt{\frac{8 R T}{\pi M}} =\sqrt{3}: \sqrt{\frac{8}{\pi}} }
\mathrm{ =\sqrt{3}: \sqrt{2.54} \\ }

\mathrm{ =1.086: 1 }

Posted by

Pankaj

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE