Get Answers to all your Questions

header-bg qa

The refracting angle of a prism is \mathrm{A} and refractive index of the material of the prism is \cot (\mathrm{A} / 2). Then the angle of minimum deviation will be -
 

Option: 1

180-2 \mathrm{~A}


Option: 2

90-\mathrm{A}


Option: 3

180+2 \mathrm{~A}


Option: 4

180-3 \mathrm{A}


Answers (1)

For Prism

\mathrm{\mu}=\frac{\sin \left(\frac{A+\delta m}{2}\right)}{\sin (A / 2)}

\mu \rightarrow \text{refractive index}

\text{A} \rightarrow\text{refracting angle of prism}

\mathrm{\delta_m} \rightarrow\text{minimum deviation angle }

\mathrm{\mu}=\cot \frac{A}{2} \\

\mathrm{\cot \left(\frac{A}{2}\right)=\frac{\sin \left(\frac{A+\delta _{m}}{2}\right)}{\sin (A / 2)}} \\

\mathrm{\frac{\cos \left(\frac{A}{2}\right)}{\sin (A / 2)}=\frac{\sin \left(A+\frac{\delta_{m}}{2}\right)}{\sin (A / 2)} }

\mathrm{\cos \left(\frac{A}{2}\right)=\sin \left(\frac{A+\delta _{m}}{2}\right)} \\

\mathrm{90^{\circ}-\frac{A}{2}=\frac{A+\delta _{m}}{2}} \\

\mathrm{90^{\circ}-A=\frac{\delta _{m}}{2}} \\

\mathrm{\delta_{m}=180^{\circ}-2 A }

Hence the correct option is 1

Posted by

Sumit Saini

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE