Get Answers to all your Questions

header-bg qa

The sum of the absolute minimum and the absolute maximum values of the function f(x)=\left|3 x-x^{2}+2\right|-x in the interval [-1,2]  is :

Option: 1

\frac{\sqrt{17}+3}{2}


Option: 2

\frac{\sqrt{17}+5}{2}


Option: 3

5


Option: 4

\frac{9-\sqrt{17}}{2}


Answers (1)

best_answer

\mathrm{f(x)= \begin{cases}x^{2}-4 x-2, & \forall x \in\left(-1, \frac{3-\sqrt{17}}{2}\right) \\ -x^{2}+2 x+2, & \forall x \in\left(\frac{3-\sqrt{17}}{2}, 2\right)\end{cases}}

\mathrm{f^{\prime}(x) \text { when } x \in\left(-1, \frac{3-\sqrt{17}}{2}\right)} \\

\mathrm{f^{\prime}(x)=2 x-4=0 \Rightarrow x=2} \\

\mathrm{f^{\prime}(x)=2(x-2) } \\   

\mathrm{\Rightarrow f^{\prime}(x) \text { is always } \downarrow } \\

\mathrm{f(2)=2} \\

\mathrm{f(-1)=3}

\dot{f}\left(\frac{3-\sqrt{17}}{2}\right)=\frac{\sqrt{17}-3}{2} \\

\mathrm{f^{\prime}(x) \text { when } x \in\left(\frac{3-\sqrt{17}}{2}, 2\right) }\\

\mathrm{f^{\prime}(x)=-2 x+2} \\

\mathrm{f^{\prime}(x)=-2(x-1)} \\

\mathrm{f^{\prime}(x)=0 \qquad\text { when } x=1}

\mathrm{f(1)=3}

Absolute minimum value  \mathrm{=\frac{\sqrt{17}-3}{2}}

Absolute maximum value  \mathrm{=3}

Sum  \mathrm{=\frac{\sqrt{17}-3}{2}+3=\frac{\sqrt{17}+3}{2}}

Posted by

Sayak

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE