Get Answers to all your Questions

header-bg qa

The tangent at a point P on the hyperbola \mathrm{\frac{x^2}{a^2}-\frac{y^2}{b^2}=1} meets one of its directrices at point F. If PF subtends an angles \mathrm{\theta} at the corresponding focus, then \mathrm{\theta} equals

Option: 1

\mathrm{\frac{\pi}{6}}


Option: 2

\mathrm{\frac{\pi}{3}}


Option: 3

\mathrm{\frac{\pi}{2}}


Option: 4

\mathrm{\frac{\pi}{4}}


Answers (1)

best_answer

The equation of the directrix is \mathrm{x=\frac{a}{e} } and the focus is \mathrm{S(a e, 0).}

Let P be \mathrm{(a \sec \theta, b \tan \theta)}

Tangent at P is \mathrm{\frac{x \sec \theta}{a}-\frac{y \tan \theta}{b}=1}                 .......(1)

At point of intersection \mathrm{F, x=\frac{a}{e}}  and  \mathrm{y=\frac{b(\sec \theta-e)}{e \tan \theta}}

\mathrm{ \begin{aligned} & \text { Then, slope of } F S \equiv m_1=\frac{\frac{b(\sec \theta-e)}{e \tan \theta}-0}{\frac{a}{e}-a e} \\ &=\frac{b(\sec \theta-e)}{-a \tan \theta\left(e^2-1\right)} \end{aligned} }

And slope of \mathrm{P S \equiv m_2}

\mathrm{ =\frac{b \tan \theta-0}{a \sec \theta-a e}=\frac{b \tan \theta}{a(\sec \theta-e)} }

As \mathrm{m_1 m_2=-1, angle \theta=\pi / 2}

The answer is (c) 

Posted by

himanshu.meshram

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE