Get Answers to all your Questions

header-bg qa

If x_{1},x_{2},\cdots x_{n} and \frac{1}{h_{1}},\frac{1}{h_{2}},\cdots ,\frac{1}{h_{n}} are two A.P.s such that x_{3}=h_{2}=8 and x_{8}=h_{7}=20 then x_{5}\cdot h_{10} equals : 

  • Option 1)

    2560

  • Option 2)

    2650

  • Option 3)

    3200

  • Option 4)

    1600

 

Answers (2)

best_answer

As we learned 

 

General term of an A.P. -

T_{n}= a+\left ( n-1 \right )d

- wherein

a\rightarrow First term

n\rightarrow number of term

d\rightarrow common difference

 

 

AP1 : x1, x2, x3       --- difference = d1

AP2 : \frac{1}{h_{1}},\frac{1}{h_{2}},\frac{1}{h_{3}} \rightarrow difference = d_{2}

x_{8}-x_{3}=20-8=5d_{1}\Rightarrow d_{1}=\frac{12}{5}

\frac{1}{h_{7}}-\frac{1}{h_{2}}=5d_{2}=\frac{1}{20}-\frac{1}{8}

5d_{2}=\frac{2-5}{40}\Rightarrow d_{2}=-\frac{3}{200}

Also   x_{3}=8=x_{5}-\frac{24}{5}\Rightarrow x_{5}=\frac{64}{5}

Also  \frac{1}{h_{10}}=\frac{1}{h_{7}}+3d=\frac{1}{20}-\frac{9}{200}

h_{10}=200

Thus x_{5}h_{10}=\frac{64}{5}\times 200=2560

 


Option 1)

2560

Option 2)

2650

Option 3)

3200

Option 4)

1600

Posted by

Himanshu

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE