Get Answers to all your Questions

header-bg qa

Two coherent sources of light interfere. The intensity ratio of two sources is 1: 4. For this interference pattern if the value of \mathrm{\frac{I_{\max }+I_{\min }}{\mathrm{I}_{\max }-\mathrm{I}_{\min }}\: is\: equal \: to \: \frac{2 \alpha+1}{\beta+3}, then \: \frac{\alpha}{\beta}} will be :
 

Option: 1

1.5


Option: 2

2


Option: 3

0.5


Option: 4

1


Answers (1)

best_answer

\mathrm{ \frac{I_1}{I_2}=\frac{1}{4}}

\mathrm{\frac{I_{\text {max }}}{I_{\min }}=\frac{\left(\sqrt{I_1}+\sqrt{I_2}\right)^2}{\left(\sqrt{I_1}-\sqrt{I_2}\right)^2}=\frac{(3)^2}{(1)^2}}

\mathrm{\frac{I_{\max }}{I_{\min }}=\frac{9}{1}}

\mathrm{\frac{I_{\max }+I_{\min }}{I_{\max }-I_{\min }}=\frac{10}{8}=\frac{5}{4}=\frac{2 \alpha+1}{\beta+3}}

\mathrm{2\alpha +1=5}

\mathrm{\alpha =2}

\mathrm{\beta =1}

\mathrm{\therefore \frac{\alpha }{\beta }=2}

Hence 2 is correct option




 

Posted by

Ajit Kumar Dubey

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE