Get Answers to all your Questions

header-bg qa

If f(x)=\frac{5x-3}{2x+1} . Find the inverse of f(x)

Option: 1

\frac{x+3}{2x-5}; x\neq5/2


Option: 2

\frac{-(x+3)}{2x-5}; x\neq5/2


Option: 3

\frac{(x+3)}{2x-5}; x\neq5/2


Option: 4

\frac{(x-3)}{2x-5}; x\neq5/2


Answers (1)

best_answer

 y=\frac{5x-3}{2x+1}

\\y(2x+1)={5x-3}\\\\2xy + y =5x - 3\\\\2xy - 5x =- 3-y\\\\x (2y-5)= -(3+y)\\\\x = \frac{-(3+y)}{2y-5}

Now we can say inverse is equal to

y= \frac{-(x+3)}{2x-5}

Posted by

Pankaj Sanodiya

View full answer