Get Answers to all your Questions

header-bg qa

A ray of light is incident on a plane reflecting surface at an angle of 30^{\circ}. Find the deviation in the incident ray. What will be the deviation if the ray suffers a reflection again at a surface inclined at 60^{\circ} to the first surface?

Option: 1

120^{\circ}


Option: 2

180^{\circ}


Option: 3

210^{\circ}


Option: 4

240^{\circ}


Answers (1)

best_answer

\angle \mathrm{B}^{\prime} \mathrm{CM}_{2}=60^{\circ}, \angle \mathrm{M}_{2} \mathrm{CD}=60^{\circ}, \angle \mathrm{B}^{\prime} \mathrm{CD}=120^{\circ}=\mathrm{D}_{2},
\angle \mathrm{DCN}_{2}=\angle \mathrm{N}_{2} \mathrm{CB}=30^{\circ}

\angle \mathrm{ABN}_1=\angle \mathrm{N}_1 \mathrm{BC}=30^{\circ} ; \quad \angle \mathrm{CBA}^{\prime}=120^{\circ}=\mathrm{D}_1

The incident ray of light \mathrm{A B} on the first mirror \mathrm{M_1} at an angle of incidence of \mathrm{30^{\circ}}  is reflected along \mathrm{\mathrm{BC}} at an angle of reflection   \mathrm{30^{\circ}}.

\therefore  Deviation in incedent ray
=60^{\circ}+60^{\circ}=120^{\circ}
The reflected ray BC is incident on the second mirror \mathrm{M_{2}}.
Since \mathrm{\angle \mathrm{M}_1 \mathrm{OM}_2=60^{\circ}},
\mathrm{\angle \mathrm{BCO}=60^{\circ}},

\mathrm{\therefore \quad \angle \mathrm{BCN}_2=\angle \mathrm{N}_2 \mathrm{CD}=30^{\circ}}
\mathrm{\therefore } Deviation \mathrm{D_{2}} of the ray
\mathrm{=60^{\circ}+60^{\circ}=120^{\circ}}
Total deviation due to the two mirrors
\mathrm{=D_1+D_2=240^{\circ}}

Posted by

qnaprep

View full answer

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks