Get Answers to all your Questions

header-bg qa

Consider an ideal gas continued in an isolated closed chamber. As the gas undergoes an adiabatic expansion, the average time of collision between molecules increase as V9, Where V in the volume of the gas.
The value of q is r=\frac{C_p}{C_v}

Option: 1

\frac{3r+5}{6}


Option: 2

\frac{3r-5}{6}


Option: 3

\frac{r+1}{2}


Option: 4

\frac{r-1}{2}


Answers (1)

best_answer

The rms spped of the molecule, c=\sqrt{3 R T / M}

Mean free path, \lambda=\frac{1}{\sigma_n^2}=\frac{1}{\sigma^2 \frac{N}{V}}

(N= Number of molecules, \sigma= diameter of the molecules)

Average time of colloision between the molecules,

t=\frac{\lambda}{c}=\frac{v}{\sigma^2 N} \cdot \frac{1}{\sqrt{3 R T / 1 M}} \text { or, } t \propto \frac{V}{\sqrt{T}}

or T \propto \frac{v^2}{t^2}

Again in the adiabatic process,

\begin{aligned} & T V \lambda-1=\text { constant or, } T \propto V^1-r \\ & \frac{v^2}{t^2} \propto V^{\prime}-r \quad \text { or, } t^2 \propto V^r+1 \text { or, } t \propto \frac{r+1}{2} \end{aligned}

\text { Hence, } q=\frac{r+1}{2}

 

Posted by

Deependra Verma

View full answer

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks