Get Answers to all your Questions

header-bg qa

One mole of oxygen undergoes a cyclic process in which volume of the gas changes 10 times within the cycle, as shown in the figure.
Process : 1-2 and 3-4 are adiabatic.

               2-3 and 4-1 are isochoric.
Find the efficiency of the process.


 

Option: 1

40%
 


Option: 2

50%


Option: 3

60%


Option: 4

70%


Answers (1)

best_answer

\mathrm{ W_{12}=\frac{R}{1-\gamma}\left[T_2-T_1\right] }

Since \mathrm{ T_2 V_2^{\gamma-1}=T_1 V_1^{\gamma-1} }

\mathrm{\therefore \quad T_2=T_l \alpha^{\gamma-1} \quad where \: \: \alpha=\frac{V_1}{V_2}}

Thus, \mathrm{W_{I 2}=\frac{R T_2}{1-\gamma}\left[1-\frac{1}{\alpha^{\gamma-1}}\right].}

Similarly, \mathrm{T_3=T_4 \alpha^{\gamma-I} and W_{34}= \frac{R T_3}{1-\gamma}\left[\frac{1}{\alpha^{\gamma-1}}-1\right]}

Also \mathrm{\quad W_{23}=0, W_{41}=0}

\mathrm{\therefore W_{n e t}=W_{l 2}+W_{23}+W_{34}+W_{4 l}=\frac{R\left(T_2-T_3\right)}{1-\gamma}\left[1-\frac{1}{\alpha^{\gamma-1}}\right] }

\mathrm{ Q_{\text {in }}=\frac{R}{\gamma-1}\left[T_3-T_2\right]=\frac{R}{1-\gamma}\left[T_2-T_3\right] }

\mathrm{ \therefore \eta=\frac{W_{\text {net }}}{Q_{\text {in }}}=1-\frac{1}{\alpha^{\gamma-1}} }

\mathrm{\text { Here } \alpha=10 ; \gamma=1.4 }

\mathrm{\therefore \quad \eta=60 \%}







$$

Posted by

Shailly goel

View full answer

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks