Get Answers to all your Questions

header-bg qa

The intensity at the maximum in a Young's double slit experiment is I0. Distance between two slits of d = 5\lambda, where \lambda is the wavelength of light used in the experiment. What will be the intensity in front of one of the slits on the screen placed at a distance D = 10 d?

Option: 1

I0


Option: 2

\frac{\text{I}_{0}}{4}


Option: 3

\frac{3}{4}\text{I}_{0}


Option: 4

\frac{\text{I}_{0}}{2}


Answers (1)

best_answer

d=5\lambda

D=10d=50\lambda

y=\left ( \Delta x \right ).\frac{D}{d}

For position in front os slit

y=\frac{d}{2}=\left ( \Delta x \right )\frac{D}{d}

6r \Delta x=\frac{d^{2}}{2D}=\frac{25\lambda ^{2}}{2.\left ( 50\lambda \right )}

\Delta x=\frac{\lambda }{4}

path diff =\frac{\lambda }{4}

= phase difference =\left ( \frac{2\pi }{\lambda } \right ).\frac{\lambda }{4}=\frac{\pi }{2}

If Intensity of any one slit is I

Then I_{R}=I+I+2\sqrt{I.I}.\cos \frac{\pi }{2}

I_{R}=I_{0}=\left ( \sqrt{I} \right+\sqrt{I} )^{2}-4I

\therefore I_{R}=\frac{I_{0}}{2}

Posted by

Divya Prakash Singh

View full answer

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks